

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

MCA II Year II Semester Regular Examinations October-2020 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 hours

Max. Marks: 60

(Answer all	Five	Units	5 x	12 =	60	Marks)
-------------	------	-------	-----	------	----	--------

UNIT-I

1	a b	Differentiate between Bigoh and omega notation with example. Define time complexity and space complexity. Write an algorithm for adding N	6 M 6 M		
		natural numbers and find the space required by that algorithm.			
2	0	UR	с м		
2	 b Discuss the General plan for analyzing efficiency of Non recursive & Recursive algorithms Understand and Selection <u>Sort with example</u>. 				
		UNIT-II			
3	a	What is a Minimum Cost Spanning tree? Explain Kruskal's Minimum cost spanning tree algorithm with suitable example.	6 M		
	b	Find an optimal solution to the knapsack instance $n=4$ objects and the capacity of knapsack $m=15$, profits (10, 5, 7, 11) and weight are (3, 4, 3, 5).	6 M		
		OR			
4	a	Explain the Travelling sales man problem.	6 M		
	b	Write the algorithm to compute 0/1 Knapsack problem using dynamic programming and explain it.	6 M		
		UNIT-III			
5	a	Explain any one application back tracking with example.	6 M		
	b	Describe in detail graph coloring using back tracking.	6 M		
		OR			
6	a	Determine Sum of subsets problem.	6 M		
	b	Explain Hamiltonian cycles with examples.	6 M		
		UNIT-IV			
7	a	Explain the general method of branch and bound.	6 M		
	b	Explain control abstraction of LC-branch and bound.	6 M		
		OR			
8	St	ate 0/1 knapsack problem and design an algorithm of LC Branch and Bound and find	12 M		
	th	e solution for the knapsack instance with any example.			
		UNIT-V			
9	W	rite the non-deterministic sorting algorithm and also analyze its complexity.	12 M		
10	11	UR	13 14		
10	VV	nat is naturing problem explain with an example?	12 IVI		

*** END ***